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Abstract: Phenylketonuria (PKU) occurs due to a mutation in the gene encoding phenylalanine hydroxylase, 

which results in inability to convert phenylalanine into tyrosine. DNA methylation is an important 

epigenetic modification of the genome. Many human diseases have been detected to be related to 

aberrant DNA methylation. Investigating the leukocytes of PKU patients exposed to phenylalanine 

has shown a wide range of methylation, which indicates DNA methylation changes as a biochemical 

marker. In this article, we reviewed evidence of DNA methylation in pathophysiology of PKU. 
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1. Introduction 

 henylketonuria (PKU), known as the most com-

mon inborn error of amino acid metabolism, is 

due to a mutation in the gene encoding phenylal-

anine hydroxylase, which results in inability to convert 

phenylalanine into tyrosine, and consequently a high 

level of phenylalanine in the blood (1, 2). This disease is 

a recessive autosomal genetic disorder caused by a de-

ficiency in phenylalanine hydroxylase that leads to in-

tellectual disability if not treated.  

Maternal PKU (MPKU) often affects the fetus and causes 

congenital heart defects and microcephaly. Manage-

ment of MPKU has primarily concentrated on control-

ling the high level of phenylalanine in the blood (3). Re-

cently, stem cell therapy (4) such as other disease(5-15) 

and antioxidant therapy (16-21) present for PKU man-

agement. The deficiency of phenylalanine hydroxylase 

activity in the liver is due to a mutation in chromosome 

12, which causes metabolic disorders. The locus of the 

human chromosome 12q23.2 contains a gene that codes 

for the phenylalanine hydroxylase enzyme, which has 

hundreds of alleles, often homozygous phenotypes (22). 

Investigation has shown that diet alone is not enough to 

cure this disease (23). 

 

2. Epidemiology 

PKU is transmitted as an autosomal recessive trait and 

has a collective prevalence of about one per 10,000 peo-

ple, therefore, 2 percent of people carry PKU gene (24, 

25). The incidence of PKU was reported to be 1 per 1500 

birth in the USA (26). It varies around the world, but its 

average frequency is 1 in 10000 (27). 

 

3. Etiology 

This congenital disorder is caused by a deficiency in 

phenylalanine hydroxylase (PAH) (25), the enzyme 

which converts phenylalanine to tyrosine, conse-

quently, the conversion of phenylalanine to tyrosine is 

interrupted (2, 25). PAH is a liver enzyme that increases 

the hydroxylation rate of 1-phenylalanine to 1-tyrosine 

by using tetrahydrobiopterin (BH4) cofactor (26). The 

polyhydroxyalkanoate (PHA) gene is about 90 kb and 

contains 13 exons encoding 451 amino acids for synthe-
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sis of the protein (28). PKU gene is located on chromo-

some 12q23.1, with more than 500 mutations reported 

in PAH gene, most of which are point mutations (29, 30). 

Loci that cover phenylalanine hydroxylase are 1.5 mbp. 

Exons in the PAH gene make approximately 2.88% of 

the genomic sequence lying between the start codon 

and 3' poly A. The longest exon and intron are exon 13 

(892 bp) and intron 2 (17.87 bp), respectively. The 

shortest ones are exon 9 (57 bp) and intron 10 (556 bp). 

The PHA gene contains 40.7% GC in its sequence (31). 

The most common mutation with a relative frequency of 

42% is the substitution of arginine with tryptophan 

(27). PKU occurs only due to defective activity of the 

PAH enzyme that is expressed only in the liver. The nor-

mal phenylalanine concentration is usually between 50 

and 120 μmol/L (32).  

In case of PKU, genotype is the more important factor 

compared to phenylalanine intake. However, people 

may carry this genotype, but the disease will only be de-

veloped by phenylalanine intake and the severity of dis-

ease can be improved by diet control (33). Genetics and 

epigenetics are likely to play a significant role in onset 

of diseases (34). Aberrant methylation in CpG island of 

the promoter results in the silencing of argininosuccin-

ate synthetase (ASS) and consequently, arginine biosyn-

thesis disorders. The changes in expression of ASS en-

zyme affect vascular contraction and metabolic func-

tions (35). ASS is the rate-limiting enzyme in arginine 

synthesis pathway. The cell is able to convert citrulline 

to arginine via this metabolic pathway.  

Investigating the leukocytes of PKU patients exposed to 

phenylalanine has shown a wide range of methylation, 

which indicates DNA methylation changes as a biochem-

ical marker. Studies have shown that a gene that plays a 

role in development of the nervous system has a partic-

ular methylation pattern that affects the expression of 

downstream genes. GTGTG demethylation and GTGC / 

TG, PAH partial methylation have been reported in 

healthy people, indicating that they are not pathogenic 

alleles. The analysis of GPX3 promoter DNA methylation 

(GPX3) indicated increased production of primary radi-

cals (36). Phosphodiester bond guanine positions over-

lap with CCAAT box/metal. The response element 

(CGATTGGCTG) of the active GPX3 promoter is analyzed 

by the oxidative stimulus. The CCAAT-box / metal inter-

ference is an interesting response element. Because this 

response element can not only be activated by reactive 

oxygen species (ROS) induced phenylalanine, it can also 

be activated by metal ions resulting from ROS hemo-

static disorder by creating an imbalance (37, 38). Stud-

ies on GTGTC methylation and partial methylation of 

GTGC/TG PHA have shown that these alleles are not 

pathogenic (38). 

It has been shown that ASS methylation can be detected 

before the obvious PKU symptoms (35). The relative 

frequency of mutations in PKU can be estimated as 0.01 

in the population, but among these mutations, C1222 

C>T allele (P.R408W) has the highest rate. Studies have 

shown that deamination-methylation of 5-methylcyto-

sine (5mC) has an important role in CpG mutations in 

the human genome (39). 

 

Table 1: Studies for methylation process in PKU 

Author, year, coun-
try 

Number of control 
and treated patients 

Treatment protocols Main findings 

Murphy, et al.,  
2006, Canada 

3 PKU patients / 12 
normal controls 

Antonarakis and the No-
menclature Working 
Group 1998, Invitrogen; 
Carlsbad, CA Wizard 
DNA Clean-up System, 
Promega; Madison, WI 

Methylation-mediated deamina-
tion of c.1222mC can be a source 
of recurring c.1222C>T, 
p.R408W alleles on different 
background haplotypes. 

Dobrowolski, et al.,  
2014. United States 

19 fetuses  of PHE un-
restricted mice 

Harlan Laboratories In utero exposure to phenylala-
nine toxicity is associated with 
aberrant DNA methylation in the 
brain. 

Dobrowolski, et al.,  
2015, United States 

2 classical PKU pa-
tients / 5 control 
brain tissues 

A protocol was obtained 
through the University of 
Pittsburgh 

Abnormal DNA methylation is 
presented in PKU patients and is 
influenced by phenylalanine ex-
posure. 

PKU: Phenylketonuria 
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4. DNA methylation and PKU 

Regarding methylation process in PKU, there are limited 

studies (Table 1). Murphy et al., have stated that concen-

trated deaminization on methylation of 5mC is impli-

cated in CpG mutation. In fact, methylated cytosine 

in mCpG nucleotide field may induce by itself and initi-

ate C>T replacement. It has been shown that PHA allele 

is probably a repeated mutation C.1222 C>T, containing 

a methylated cytosine. There is the similar pattern of 

methylation in CpG dinucleotide. In homozygous patient 

samples of p.R408W mutation, T has been recorded in 

c.1222 nucleotide (A in complementary DNA). In gen-

eral, based on these evidence, it has been hypothesized 

that methylation-mediated deamination of c.1222 mc is 

the main mechanism involved in the repeat of 

c.1222 C>T, P.r408w alleles in different background 

haplotypes. The highest observed amounts of 

c.1222 C>T,P.R408W is the main reason for outbreak of 

PKU disease in the Caucasian population (40).      

Dobrowlski et al., stated that phenylalanine is known as 

a toxic component in PKU patients, but the exact mech-

anism of its toxicity is unclear. They concluded that the 

pattern of DNA methylation may be a critical biomarker 

relating to historic phenylalanine exposure. These data 

may improve quality of therapy (41).  

Findings of Scriver et al., showed that altered DNA meth-

ylation in brain due to phenylalanine toxicity is fetal. In 

the mentioned research, PKU mice were used as a 

model. The diet with limited phenylalanine led to the 

levels of PHE≤ 150μm in blood, while in unlimited con-

dition, the concentration of phenylalanine was 100 μm. 

Assessment of methylation process in promoters of 17 

samples revealed that in contrast to MPKU, expression 

of these genes was reduced in PKU (31).  

This opinion that “phenylalanine toxicity may modify 

DNA methylation in brain tissue” is a key hypothesis for 

clarifying pathophysiological mechanisms. Various 

kinds of individual cell types have different sensitivities 

to phenylalanine poisoning, resulting in different re-

sponses in methylome and consequently, changes in 

gene expression occur.  The exact alterations in gene ex-

pression are not clear (42). It is obvious that more re-

search is needed to clarify the exact implicated mecha-

nisms. 

 

5. Conclusion 

Data on the role of DNA methylation in pathology of phe-

nylketonuria is very limited. Studies have suggested 

that DNA methylation may play a role in the mechanism 

of phenylalanine toxicity in PKU. Accordingly, some 

studies have suggested DNA methylation as a possible 

biomarker relating to historic phenylalanine exposure. 
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